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By using the Hartree-Fock-Bogoliubov equations within the Popov approximation, we investigate
the thermodynamic properties of a dilute binary Bose-Fermi mixture confined in an isotropic har-
monic trap. For mixtures with an attractive Bose-Fermi interaction we find a sizable enhancement of
the condensate fraction and of the critical temperature of Bose-Einstein condensation with respect
to the predictions for a pure interacting Bose gas. Conversely, the influence of the repulsive Bose-
Fermi interaction is less pronounced. The possible relevance of our results in current experiments
on trapped 87Rb−40K mixtures is discussed.

PACS numbers: PACS numbers:03.75.Kk, 03.75.Ss, 67.40.Db, 67.60.-g

The recent experimental realization of ultracold
trapped Bose-Fermi (BF) mixtures of alkali-metal atoms
introduces an interesting new instance of a quantum
many-body system [1, 2, 3], and has also stimulated a
number of theoretical investigations that address, for ex-
ample, the static property [4], the phase diagram and
phase separation [5], stability conditions [6] and collec-
tive excitations [7, 8, 9] of trapped BF mixtures. These
investigations have mainly concentrated at zero temper-
ature using the standard Gross-Pitaevskii (GP) equation
for the Bose gas, in which all the bosonic atoms are as-
sumed to be in the Bose condensate. An extension of
these theories at finite temperatures where the conden-
sate is strongly depleted is therefore of high interest, and
will also have practical applications. In the theory for
a pure Bose gas, the simplest generalization of the GP
equation including the effect of the noncondensed atoms
in a self-consistent manner is the Popov version of the
Hartree-Fock-Bogoliubov (HFB) approximation [10]. As
discussed in Ref. [10], this approximation is expected to
be good for both low and high temperatures.

In this paper, we generalize the HFB-Popov approx-
imation to binary BF mixtures and address the ques-
tion of how the BF interaction affects the thermodynamic
properties of mixtures. We calculate self-consistently the
temperature-dependent density profiles of mixtures, as
well as the condensate fraction and the critical tempera-
ture of Bose-Einstein condensation (BEC), at various BF
interaction strengths. Our present results provide the
first self-consistent calculation of these thermodynamic
quantities within the HFB-Popov theory which goes be-
yond the semiclassical approximation used previously for
determining the critical temperature [11, 12] and den-
sity profiles of binary BF mixtures [13]. Our calcula-
tions also show a highly nonlinear dependence of these
quantities on the BF interaction. In the presence of the
BF attraction, the thermal depletion of the condensate
is remarkably decreased and the critical temperature is
shifted towards high temperatures. Conversely, the re-
pulsive BF interaction affects the condensate fraction and
critical temperature in the opposite direction. However,

its influence is less pronounced compared to the attrac-
tive case.

The HFB-Popov mean-field theory for an inhomoge-
neous interacting Bose gas has been derived in detail by
Griffin in Ref. [10]. The generalization of this theory to
a dilute binary BF mixture is straightforward. Here we
merely give a brief summary of basic equations and em-
phasize the necessary modification in the presence of the
BF interaction. The trapped dilute mixture is portrayed
as a thermodynamic equilibrium system under the grand
canonical ensemble whose thermodynamic variables are
Nb and Nf , respectively, the total number of trapped
bosonic and fermionic atoms, T , the absolute tempera-
ture, and µb and µf , the chemical potentials. The density
Hamiltonian of the system is given by (in units of h̄ = 1)

H = Hb + Hf + Hbf ,

Hb = ψ+(r)

[

− ▽2

2mb
+ V b

trap(r) − µb

]

ψ(r) +
gbb

2
ψ+ψ+ψψ,

Hf = φ+(r)

[

− ▽2

2mf
+ V f

trap(r) − µf

]

φ(r),

Hbf = gbfψ
+(r)ψ(r)φ+(r)φ(r), (1)

where ψ(r) (φ(r)) is the Bose (Fermi) field operator
that annihilates an atom at position r. Here we con-
sider a spherically symmetric system, with trap poten-

tials V b,f
trap(r) = mb,fω

2
b,fr

2/2, where mb,f are the atomic
masses and ωb,f are the trap frequencies. The interac-
tion between bosons and between bosons and fermions
are described by the contact potentials and are param-
eterized by the coupling constants gbb = 4πh̄2abb/mb

and gbf = 2πh̄2abf/mr in terms of the s-wave scattering
lengths abb and abf , with mr = mbmf/(mb+mf ) being
the reduced mass. We neglect here the fermion-fermion
interactions, since we are considering a spin-polarized
Fermi gas where s-wave collisions are forbidden by the
Pauli principle. In the dilute regime, we may treat the
density Hamiltonian describing the BF coupling in a self-
consistent mean-field manner, namely,

Hbf ≃ gbf

[

ψ+ψ〈φ+φ〉 + 〈ψ+ψ〉φ+φ− 〈ψ+ψ〉〈φ+φ〉
]

.
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This kind of decomposition has been used extensively for
theoretical investigations of BF mixtures at zero temper-
ature [17].

To the Bose field operator ψ(r, t), we shall apply
the usual decomposition into a c-number part plus an
operator with vanishing expectation value: ψ(r, t) =

Φ(r)e−i(ε0−µb)t + ψ̃(r). Φ(r) represents the condensate

wave function with eigenvalue ε0 and the operator ψ̃(r)
represents the excitations of the condensate. This ansatz
is then inserted in the equation of motion for ψ(r, t):

i
∂ψ

∂t
=

[

− ▽2

2mb
+ V b

trap − µb

]

ψ+ gbbψ
+ψψ+ gbf 〈φ+φ〉ψ.

(2)
The statistical average over Eq. (2) and the replacement

of the cubic term ψ̃+ψ̃ψ̃ by the average in the mean-field
approximation 2〈ψ̃+ψ̃〉ψ̃ with neglecting the anomalous

expectation value 〈ψ̃ψ̃〉 and its complex conjugate lead
to the generalized GP equation,

LGP Φ(r) = 0, (3)

where LGP ≡ −▽2/2mb + V b
trap − ε0 + gbb(nc(r) +

2ñ(r))+gbfnf(r) with the local density of the condensate

nc(r) = |Φ(r)|2, of the depletion ñ(r) = 〈ψ̃+(r, t)ψ̃(r, t)〉,
and of the Fermi gas nf (r) = 〈φ+(r, t)φ(r, t)〉. The
condensate wave function in Eq. (3) is normalized to
Nc = 1/(eβ(ε0−µb) − 1) with β = (kBT )−1.

The subtraction of Eq. (3) from Eq. (2) gives rise to

two coupled equations of motion for ψ̃(r, t) and its ad-
joint, which can be solved by the usual Bogoliubov trans-
formation, ψ̃(r, t) =

∑

i

[

ui(r)α̂ie
−iǫit + v∗i (r)α̂+

i e
iǫit

]

,

to the new Bose operators α̂i and α̂+
i . This gives the

coupled Bogoliubov-deGennes (BdG) equations,

[LGP + gbbnc(r)]ui(r) + gbbnc(r)vi(r) = ǫiui(r),

[LGP + gbbnc(r)] vi(r) + gbbnc(r)ui(r) = −ǫivi(r).(4)

These equations define the quasiparticle excitation ener-
gies ǫi relative to the condensate eigenvalue ε0, and the
quasiparticle amplitudes ui and vi. Once these quantities
have been determined, the density of the depletion is ob-
tained in terms of the thermal number of quasiparticles
〈α̂+

i α̂i〉 = (zeβǫi − 1)−1 by

ñ(r) =
∑

i

ñi(r)Θ(Eb
c − ǫi) +

∞
∫

Eb
c

dǫñ(ǫ, r), (5)

ñi(r) =
|ui(r)|2 + |vi(r)|2

zeβǫi − 1
+ |vi(r)|2 ,

ñ(ǫ, r) =
m

3/2
b√
2π2

{

1

zeβǫ − 1
+

1

2
− ǫ

2ǫHF

}

×(ǫHF − V b
trap + ε0 − 2gbbnb(r) − gbfnf (r))1/2,

where z = eβ(ε0−µb) = 1+1/Nc, ǫHF = (ǫ2 +g2
bbn

2
c(r))

1/2

and nb(r) = nc(r) + ñ(r) is the total density of the Bose

gas. In the above equations, to eliminate the numerical
errors due to the necessary truncation of the numerical
basis set, we adopt the strategy of Ref. [18] and introduce
an energy cutoff Eb

c , above which the semiclassical local-
density approximation has been employed.

To solve the generalized GP and BdG equations, one
has to find the local density of the Fermi gas nf (r). To
this end, we insert φ(r, t) =

∑

i ϕi(r)ĉie
−iǫit in Eq. (1) to

diagonalize the quadratic Hamiltonian for φ(r, t) in terms
of the new Fermi operator ĉi that annihilates a fermion
at state ϕi(r). This leads to a stationary Schrödinger
equation for ϕi(r),

[

− ▽2

2mf
+ V f

trap + gbf (nc + ñ)

]

ϕi = ǫiϕi. (6)

The density of the Fermi gas is thus obtained by

nf (r) =
∑

i

nfi(r)Θ(Ef
c − ǫi) +

∞
∫

Ef
c

dǫnf(ǫ, r), (7)

nfi(r) = |ϕi(r)|2 〈ĉ+i ĉi〉,

nf (ǫ, r) =
m

3/2
f√
2π2

1

eβ(ǫ−µf ) + 1
(ǫ− V f

trap − gbfnb(r))
1/2,

where 〈ĉ+i ĉi〉 = (eβ(ǫi−µf ) + 1)−1 is the Fermi distribu-
tion. Analogously to Eq. (5) we have applied the finite-
temperature Thomas-Fermi (TF) approximation only for
high-lying Fermi levels above an energy cutoff Ef

c to
avoid the truncation errors.

Equations (3)-(7) form a closed system of equations
that we have referred to as the “HFB-Popov” equations
for a dilute BF mixture. We have numerically solved
these equations by an iterative procedure as follows: The
generalized GP and BdG equations are first solved self-
consistently for Φ(r), ui(r), and vi(r) as described in Ref.
[10] to evaluate nc(r) and ñ(r), with nf (r) set to the re-
sult for an ideal Fermi gas. Once nc(r) and ñ(r) are
known, the eigenfunctions in Eq. (6) are obtained nu-
merically and are used to update nf (r) in Eq. (7). This
newly generated nf (r) is then inserted in the GP and
BdG equations and the process is iterated to convergence.
At each step, the chemical potentials for the Bose gas and
the Fermi gas are fixed by the normalization conditions,
∫

drnb(r) = Nb and
∫

drnf (r) = Nf , respectively.
As an illustration of this procedure, we consider a

mixture of 2000 87Rb (boson) and 2000 40K (fermion)
atoms in an isotropic harmonic trap, for which the order
parameter Φ(r), the quasiparticle amplitudes ui(r) and
vi(r), and the orbits ϕi(r) can be labelled by (n, l,m),
according to the number of nodes in the radial solution
n, the orbital angular momentum l, and its projection
m. In addition, we use the following parameters [3]:
mb = 1.45×10−25 kg, ωb = 2π×216 Hz, mf/mb = 0.463,
ωf/ωb = 1.47, abb = 99a0, and abf = −410a0, where

a0 = 0.529 Å is the Bohr radius. Because our calculations
are especially delicate near the critical temperature, we
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FIG. 1: The density profiles of the condensate nc(r) and of
the Fermi gas nF (r) for a mixture of 2000 87Rb and 2000 40K
atoms in an isotropic harmonic trap at various BF interaction:
abf = 0 (full line), abf = +410a0 (dashed line), and abf =
−410a0 (dash-dotted line), where a0 = 0.529 Å is the Bohr
radius. Insets show the density profiles of the noncondensate
ñ(r). We have taken abb = 99a0 and ωb = 2π × 216 Hz.
The coordinate r and densities are measured in units of the
harmonic oscillator length ab

ho and
(

ab
ho

)3

, respectively.

have taken nmax = 32, lmax = 64 and high energy cutoffs
of Eb

c = 60h̄ωb and Ef
c = 90h̄ωb to ensure the accuracy.

Throughout the paper, we also express the lengths and
energies in terms of the characteristic oscillator length
ab

ho = (h̄/mbωb)
1/2 and characteristic trap energy h̄ωb,

respectively.
In Fig. 1, we present our results for the density pro-

files of the condensate, of the noncondensate, and of the
Fermi gas at two temperatures. The cases with the BF
interaction and without the BF interaction are shown by
the dash-dotted lines and full lines, respectively. We have
also considered a fictitious case of a positive BF interac-
tion: abf = +410a0 (dashed lines). The choice of the
first temperature, T = 80 nK, corresponds to the situa-
tion in which the condensate and noncondensate have an
approximately equal number of atoms, while the other
temperature T = 110 nK is chosen to be close to the
critical temperature for a pure interacting Bose gas with
the same number of bosons, Tc ≈ 112 nK. As clearly
emerges from the figure, the density profiles of the con-
densate and of the Fermi gas are strongly affected by the
BF interaction at both temperatures. In particular, the
densities around the center are significantly enhanced in
the case of the BF attraction. The density profile of the
noncondensate (shown in the insets), on the other hand,
is less influenced by the BF interaction due to its broad
distribution and the strong repulsion from the conden-
sate.

In Fig. 2, we show our predictions for the temperature
dependence of the condensate fraction Nc(T )/Nb. The
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FIG. 2: Temperature dependence of the condensate frac-
tion. The dashed and dash-dotted lines correspond to abf =
+410a0 and −410a0, respectively. The solid lines are the
result for a pure interacting Bose gas. The empty cir-
cles are ideal Bose gas result with the finite size correc-

tion, N0

c /Nb = 1 − (T/T 0

c )3 − 2.1825(T/T 0

c )2N
−1/3

b , where

kBT 0

c = 0.94h̄ωbN
1/3

b . The inset highlights the condensate
fraction near the critical temperature. The other parameters
are the same as in Fig.1.

essential feature of the figure is the importance of the at-

tractive BF interaction that results in a sizable quenching
of the thermal depletion compared to the prediction for
a pure interacting Bose gas. Contrarily, the effects of the
repulsive BF interaction are more subtle and are always
very small. The sizable enhancement of the condensate
fraction predicted by our calculation follows from the fact
that in the presence of the BF attraction the conden-
sate effectively experiences a more tightly confining po-
tential. As a consequence, if we neglect the corrections
due to the interaction between bosons and the finite size
effect, the critical temperature T 0

c = 0.94h̄ωeffN
1/3
b /kB

is effectively increased and the condensate fraction is,
therefore, enhanced according to the ideal gas result
Nc/Nb = 1 − (T/T 0

c )3.

Closely related to the condensate fraction, another im-
portant parameter characterizing the effect of the BF in-
teraction is the shift of the critical temperature from the
pure interacting Bose gas case. In Fig. 3, we report the
HFB-Popov results for the relative shift of the critical
temperature δTc/Tc as a function of abf in solid circles.
Here Tc is determined as the maximum of the function
d2Nc/dT

2 [19]. The semiclassical predictions for δTc/Tc,
calculated as in Ref. [11] in the first order of abf , are
also shown by the dashed line. The agreement of these
two approaches is reasonably good for a weak BF inter-
action (|abf | <∼ 100a0). However, as |abf | increases, our
HFB-Popov results diverge from the semiclassical predic-
tions. In particular, for the realistic BF s-wave scattering
length for 87Rb−40K mixtures, abf = −410a0, the devi-
ation becomes remarkable.

We now turn to consider the experimental relevance of
our results. In current experiments, the realistic number
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FIG. 3: The relative shift of the critical temperature as a
function of the BF s-wave scattering length abf (in units of
a0). The solid circles are the result calculated using the HFB-
Popov equations and the full line is a parabolic fit to guide eye.
The dashed line is the result calculated by Eq. (18) in Ref.
[11]. The inset shows the functions dNc/dT and d2Nc/dT 2 for
the case of abf = −410a0. Tc is extracted from the maximum
of d2Nc/dT 2. The other parameters are the same as in Fig.1.
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FIG. 4: Temperature dependence of the condensate fraction
for a mixture of 2× 104 87Rb and 5× 104 40K atoms confined
in an isotropic trap with ωb = 2π× 91.7 Hz, calculated in the
semiclassical version of the HFB-Popov theory as mentioned
in the text.

of 87Rb and 40K atoms in mixtures is about ten times
larger than what we assumed here [3]. For such large
number of atoms, our calculation is very time consum-
ing and we then resort to the semiclassical version of
the HFB-Popov theory by setting Eb

c to an energy of

a few h̄ωb and applying the TF approximation for the
whole Fermi spectra. The accuracy of this semiclassical
treatment has been checked by the comparison with the
full quantum mechanical calculations for a small mixture.
The condensate fraction obtained by these two methods
coincides within 1% errors.

In Fig. 4, we present the results for Nc(T )/Nb of a
mixture of 2 × 104 87Rb and 5 × 104 40K atoms con-
fined in an isotropic trap with ωb = 2π × 91.7 Hz. This
choice corresponds to the typical experimental situations
at LENS [20]. Although the trap becomes more shal-
low, the enhancement of the condensate fraction shown
in Fig. 4 is quantitatively similar to the one of Fig. 2,
due to the much larger values of Nb and Nf contained
in the trap. Finally, in this case we also roughly esti-
mate the relative shift of the critical temperature due
to the BF attraction, (δTc/Tc)bf ≃ +4%, which is com-
parable to the shift due to the boson-boson interaction,

(δTc/Tc)bb ≃ −1.33(abb/a
b
ho)N

1/6
b = −3.2%, and the fi-

nite size correction, (δTc/Tc)fs ≃ −0.73N
−1/3
b = −2.7%

[21].
In conclusion, we have generalized the HFB-Popov

theory to binary BF mixtures and have presented a de-
tailed study of the thermodynamic properties of mixtures
at finite temperature, including the density profiles, the
condensate fraction, as well as the critical temperature
of BEC. These quantities are found to depend on the
BF interaction in a nonlinear way. Moreover, under
conditions appropriate to the 87Rb−40K mixture in the
LENS experiments, the condensate fraction and the
critical temperature of BEC are significantly enhanced
with respect to the prediction for a pure interacting Bose
gas. This enhancement might be observable in current
experiments.
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